
26 The Delphi Magazine Issue 24

Creating NT Services
by John Chaytor

This article shows how you can
create services to run under

Windows NT. Services can be use-
ful on both a single workstation PC
and in a network environment. If
you look at Settings/Control
Panel/ Services you will be able to
see a list of services defined on
your machine. Examples of serv-
ices that run on my machine are:
FTP, Gopher and WWW publishing,
telephony, remote access, event
logging and services supporting
my video card.

Don’t confuse the term service
with server in the client/server ar-
chitecture. A Win32 service can in-
deed be part of a client/server
relationship (SQL Server is an ex-
ample of such a service) but it can
equally be a stand-alone utility.
Two examples of the latter are
automated backup and disk
de-fragment utilities such as
Diskeeper.

So what is so special about a
service? It is an executable pro-
gram but it runs under the control
of the Service Control Manager
(SCM). It needs to be defined in the
registry. The SCM controls when
the service starts and ends, either
from information in the registry (in
response to user requests from the
Control Panel/Services applet) or
via API calls from applications. It
can be started automatically at sys-
tem boot time before any user logs
on.

Services do not need a user to be
logged on in order to execute, but
they can, if required, run under a
specific user id account. A service
accessing a database may need a
valid user id to enable it to connect
to the DBMS. Services remain run-
ning when a user logs off.

Services can have dependency
information stored in the registry
of services that need to be started
before starting the current service.
The SCM will start them in the cor-
rect sequence.

Services are usually linked as
console applications. They must

have two types of entry points de-
clared with the stdcall directive: a
ServiceMain procedure which is
called on service start-up and a
ControlHandler procedure which is
called to query or change the
status of the service once it is
running.

A single program (process) can
contain the code for multiple serv-
ices. This is useful if you have serv-
ices that need to communicate. By
putting them in the same process
you avoid the overhead of inter-
process communication. However,
if your service required a special
logon-id the service must run in its
own process.

So far so good, but what are the
drawbacks? Services can be diffi-
cult to debug. I would recommend
that you develop the main logic of
your service as a standard console
or basic GUI app then convert it to
a service once you are happy with
it. Unlike standard console apps, in
a service you cannot write to the
console via WriteLn (there may not
be any users logged on to the ma-
chine). You must ensure that the id
that the service runs under (lo-
calsystem by default) has the cor-
rect access privileges for all the
required resources. It may be nec-
essary to set up a special userid
and password specifically for your
service. If you do this, remember to
set the password never expires op-
tion to avoid problems in 30 days
or so!

If you access network drives
from the service, ensure that you
use the UNC paths to access the
drives (eg \\Admin01\C:\Payroll
\Files\Wages.DB). You cannot rely
on mapping drive letters to a net-
work drive, as these may be
invalid.

Getting Started
Initially we will create a very sim-
ple ‘service’ that just beeps peri-
odically to show that it is running,
to allow us to explore the interac-
tion between the SCM and a service

(the delay period can be altered at
service start-up). It will accept
start, pause, resume and stop re-
quests. To aid debugging we’ll add
the capability to write to the event
log (this can be used by standard
applications also). Once we are
happy with that I’ll describe the
two classes I developed to encap-
sulate the interface to the SCM
which hides the service start-up
and control mechanism allowing
you to concentrate on the
functionality of your service.

Delphi 2 does not come with the
Pascal version of the header file
WinSvc.H. I have supplied my ver-
sion of this, called WINSVCX.PAS,
(so it won’t conflict with the offi-
cial version supplied with Delphi
3) on the disk. It only contains the
definitions required for this
article.

Service Program Structure
Listing 1 shows the source for the
first demo program (on the disk as
DEMOSV1.DPR) minus error check-
ing and event logging. This pro-
gram contains a single service.
There are special considerations
required for shared service pro-
cesses and these are highlighted
as they arise.

Although the program is usually
executed by the SCM it can also be
executed at the command line like
any regular console program. We
can use this fact to our advantage.
When the SCM starts the program
it uses an entry in the registry (see
later) to get the fully qualified path
name for the EXE file: the services
described here do not define a pa-
rameter. Hence, if the program is
started without parameters it can
assume that it is being started by
the SCM. If the program is passed a
parameter this means that a user
started the program at the com-
mand line. In the demo programs
provided I use this fact to auto-
matically install or uninstall the
service by passing a parameter of
install or uninstall. This idea

August 1997 The Delphi Magazine 27

came from examples in the MSDN
and avoids the need to use the SC
utility or manually edit the regis-
try. See the file SERVICES.TXT on
the disk for further MSDN
references.

As well as the main entry point, a
service program must have two ad-
ditional entry points. ServiceMain
is the entry point for the main
thread of the service. A shared
service process may have more
than one of these entry points or it
may use the single entry point for
all services. I use a single entry
point (see DemoSv2). ControlHandler
is the entry point called to update
or query the running status of the
service. Each service must have its
own unique entry point.

Process Start-Up
After the SCM starts the process it
waits for the process to call the
StartServiceCtrlDispatcher func-
tion to register all the services it
contains. A single service process
(such as DemoSv1) should call this
immediately as any service initiali-
sation can be done when Service-
Main is called by the SCM. A shared
service process should do any
process-wide initialisation first (ie
things that need to be done before
any service starts) before it calls
StartServiceCtrlDispatcher. How-
ever, if this initialisation is going to
take over 30 seconds the SCM
would timeout and assume that an
error has occurred. To get round
this you would need to create an
extra thread to perform the pro-
cess wide initialisation and call

StartServiceCtrlDispatcherwithin
the timeout period. You’d then
need to implement a mechanism to
inform the services that process
initialisation has completed before
they are allowed to start.

Note that if you accidentally
start the program yourself from
the command line without passing
parameters, the call to StartServ-
iceCtrlDispatcher will timeout as
the SCM is not expecting the call.
No damage will be done though.

The program will only be started
by the SCM when the first service
needs to be started. If additional
services are to be started in the
same process the SCM will simply
call the relevant ServiceMain entry
point for the service being started
as specified in the table passed to
StartServiceCtrlDispatcher.

unit DemoSv1;
Uses
Windows, SysUtils, Registry, WinSvcX, Demo1Log;

const
DemoServiceName = ‘DemoService1’;
DemoServiceDisplayName = ‘Demonstration service 1’;
FTerminated: Boolean;
FServiceStatus: TServiceStatus;
FServicStatusHandle: SERVICE_STATUS_HANDLE;

procedure DemoServiceHandler(Code: Integer); StdCall;
begin
case code of
SERVICE_CONTROL_STOP:
begin
With FServiceStatus do begin
dwCurrentState := SERVICE_STOP_PENDING;
dwWin32ExitCode := 0;
dwServiceSpecificExitCode := 0;

end;
end;

SERVICE_CONTROL_PAUSE:
FServiceStatus.dwCurrentState := SERVICE_PAUSED;

SERVICE_CONTROL_CONTINUE:
FServiceStatus.dwCurrentState := SERVICE_RUNNING;

end;
SetServiceStatus(FServicStatusHandle,FServiceStatus);
if FServiceStatus.dwCurrentState = SERVICE_STOP_PENDING
then
FTerminated := True;

end;
Procedure DemoServiceMain(NumArgs: DWord; Args: PCharArray);
StdCall;

var
InitialisedOK: Boolean;
BeepDelay: Integer;

begin
BeepDelay := 1000;
FServicStatusHandle := RegisterServiceCtrlHandler(
DemoServiceName,@DemoServiceHandler);

if FServicStatusHandle <> 0 then begin
FillChar(FServiceStatus,sizeof(TServiceStatus),0);
With FServiceStatus do begin
dwServiceType := SERVICE_WIN32_OWN_PROCESS;
dwCurrentState := SERVICE_START_PENDING;
dwControlsAccepted := SERVICE_ACCEPT_STOP or
SERVICE_ACCEPT_PAUSE_CONTINUE;

end;
{ Set status to pending before we do our
initialisation }

if SetServiceStatus(FServicStatusHandle,
FServiceStatus) then begin
{ Do initialisation here. If it takes > 1 sec you
should call SetServiceStatus passing wait hints
and checkpoints to show progress is being made }

{ Simulate time taken to initialise }
Sleep(1000);
InitialisedOK := True;
{ We assume initialisation was OK for this demo! }
if InitialisedOK then begin
FServiceStatus.dwCurrentState := SERVICE_RUNNING;
if SetServiceStatus(FServicStatusHandle,
FServiceStatus) then begin
{ Main loop of service process }

While not FTerminated do begin
Sleep(BeepDelay);
if not (FServiceStatus.dwCurrentState =
SERVICE_PAUSED) then
MessageBeep(0);

end;
if FServiceStatus.dwCurrentState =
SERVICE_STOP_PENDING then begin
{ Do cleanup processing here }
FServiceStatus.dwCurrentState :=
SERVICE_STOPPED;

SetServiceStatus(FServicStatusHandle,
FServiceStatus);

end;
end;

end else With FServiceStatus do begin
dwCurrentState := SERVICE_STOPPED;
dwWin32ExitCode := 666;
{ Set a code to indicate reason for failure }
SetServiceStatus(FServicStatusHandle,
FServiceStatus);

end;
end;

end;
end;
{ Main() entry point }
var
Param: ShortString;
ServiceEntryTable: PServiceTableEntry;

begin
FTerminated := False;
Param := UpperCase(ParamStr(1));
if (Param = ‘INSTALL’) or (Param = ‘I’) then
InstallService

else
if (Param = ‘UNINSTALL’) or (Param = ‘U’) then
UninstallService

else
if (Param = ‘VERSION’) or (Param = ‘V’) then
DisplayVersion

else
if Param = ‘’ then begin
{ We should have been called by the SCM,
so connect to it }

ServiceEntryTable :=
AllocMem(2*SizeOf(TServiceTableEntry));

try
ServiceEntryTable^.lpServiceName:=
DemoServiceName;

ServiceEntryTable^.lpServiceProc:=
@DemoServiceMain;

{ The CtrlDispatcher loops round waiting for
control requests for the service(s) detailed
in the ServiceEntryTable array. It will not
return until the all services in the process
terminate (or an error has occurred) }

StartServiceCtrlDispatcher(ServiceEntryTable^);
finally
FreeMem(ServiceEntryTable);

end;
end else
DisplaySyntaxOptions;

end.

➤ Listing 1

28 The Delphi Magazine Issue 24

The StartServiceCtrlDispatcher
function is passed a dispatch table.
This is a NULL delimited array of
TServiceTableEntry structures: one
for each supported service. This
structure consists of two fields: a
pointer to a NULL terminated string
containing the service name and a
pointer to its ServiceMain entry
point. Note that as you supply the
address of the entry point this al-
lows you to call this function any-
thing you wish (its name is not
exported). In DemoSv1 it is called
DemoServiceMain.

When you call StartServ-
iceCtrlDispatcher, the function re-
mains in a loop waiting to receive
commands from the SCM to be dis-
patched to the service(s) in the
process. Due to this, the function
does not return until all services in
the process have terminated.

If the call to StartService-
CtrlDispatcher succeeds it will
start the required service. To do
this, the dispatcher creates a
thread and calls the ServiceMain
entry point supplied in the dis-
patch table. This is an important
point. We do not need to create
a thread for the service. The
dispatcher does this for us.

Service Start-Up
The DemoServiceMain procedure is
passed two parameters. The first is
the number of arguments and the
second is a pointer to an array of
PChars (the arguments). The first
argument is always the name of the
service being started. This allows a
single entry point to be common to
multiple services (more on this
later). Any optional parameters
which follow are the start-up pa-
rameters typed on the Control
Panel Services applet by the user.
This information can be used by
the service in any way you wish.
DemoSv1 uses the last parameter to
specify the delay between beeps.

In the DemoServiceMain proce-
dure the first thing that needs to be
done is to call the RegisterServ-
iceCtrlHandler function. This
expects two parameters: a pointer
to the service name and the entry
point of the Handler procedure
described earlier. This procedure
is called DemoControlHandler in

DemoSv1. It will be called from the
dispatcher whenever there is a re-
quest to change the status of the
service (eg pause, restart or stop)
or interrogate its current state.
The handle returned from Regis-
terServiceCtrlHandler will be
unique for the service. This needs
to be stored away, as it must be
used when informing the SCM of
the status of the service.

After registering the Handler
procedure, the ServiceMain proce-
dure needs to inform the SCM of its
current status. This is done via a
call to SetServiceStatus. This
function accepts the service han-
dle (returned from RegisterServ-
iceCtrlHandler) and a pointer to a
TServiceStatus structure. Listing 2
shows the format of this structure
and Table 1 shows the meaning of
the fields.

At this point we would start do-
ing processing specific to our serv-
ice (eg waiting on a TCP port, setup
timers for scheduling etc).

In the DemoSv1 example it simply
goes into a loop and beeps each
time round. Not very exciting!
However, being a service, it will
stay executing if you log off the ma-
chine, beeping away to itself. While
in its process loop, the service
checks two fields: FTerminated, to
see if it should stop processing,
and the contents of dwCurrentState
to see if the service has changed its
status to paused.

These states are set by the code
in the ServiceHandler. If you re-
member, this is called by the SCM
when it needs to query or change
the state of the service. If it re-
quests that the service be stopped,
paused or resumed the code sim-
ply updates dwCurrentState to indi-
cate this. It does not suspend or
resume the service thread! If you
did this you may pause the service
in the middle of processing a re-
quest. In the examples it is up to
the main service to respond to
these requests. For example, if a

dwServiceType SERVICE_WIN32_OWN_PROCESS (there is
only one service in this process) or
SERVICE_WIN32_SHARE_PROCESS (there is
more than one services in the process).

dwCurrentState SERVICE_STOPPED or SERVICE_START_PENDING
(this is the initial value) or
SERVICE_STOP_PENDING or SERVICE_RUNNING
or SERVICE_CONTINUE_PENDING or
SERVICE_PAUSE_PENDING or SERVICE_PAUSED.

dwControlsAccepted A combination of the flags
SERVICE_ACCEPT_STOP,
SERVICE_ACCEPT_PAUSE_CONTINUE and
SERVICE_ACCEPT_SHUTDOWN. This lets the
SCM know what instructions can be passed to
the service. These can be changed during the
life of the service.

dwWin32ExitCode The two ExitCode fields are used to pass the
return code back to the SCM when service stops.

dwServiceSpecificExitCode

dwCheckPoint See Lengthy operations in the article.

dwWaitHint See Lengthy operations in the article.

➤ Table 1: TServiceStatus fields

TServiceStatus = Record
dwServiceType: Integer;
dwCurrentState: Integer;
dwControlsAccepted: Integer;
dwWin32ExitCode: Integer;
dwServiceSpecificExitCode: Integer;
dwCheckPoint: Integer;
dwWaitHint: Integer;

End;

➤ Listing 2

August 1997 The Delphi Magazine 29

service is paused, it should honour
all requests that it is currently
servicing then refuse to process
any more requests. The examples
do this by checking the current
service state.

The code parameter passed to
DemoServiceHandler indicates what
the SCM is requesting. The handler
consists of a single case statement
specifying each option it is expect-
ing from the SCM. Regardless of
why the SCM called this routine it
should always call SetServiceSta-
tus to update the SCM. If we are

passed a request to pause or re-
sume the service the routine sim-
ply updates the status. The service
thread must react to this. When the
SCM requests that the service be
stopped, the handler sets the
status to stop pending. It then sets
the FTerminated flag to True. At the
end of the case statement the Set-
ServiceStatus call will update the
SCM to ‘stop pending.’ The service
thread checks this field periodi-
cally to see if it should terminate.
At this point it should do all re-
quired cleanup. It then needs to set

the status to SERVICE_STOPPED and
inform the SCM via a call to Set-
ServiceStatus. If the service fails to
respond promptly the SCM will
return an error.

If this is the last service to stop
(it is in DemoSv1) the original call
to StartServiceCtrlDispatcher re-
turns and the process terminates.

Service Configuration Data
If you need to store information for
your service it is recommended
that you store it under the unique
key in

HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\
NameOfService.

Lengthy Operations
Start, Stop, Pause and Continue re-
quests can potentially take some
considerable time to complete
successfully. As the SCM may time-
out before the service has com-
pleted the request a mechanism
has been defined to inform the
SCM that the action is still being
processed. This is done via the
dwCheckPoint and dwWaitHint fields
of the TServiceStatus structure. At
the start of the operation the
status needs to be set to one of the
pending states shown in Table 2.
Before setting the status the
dwWaitHint should be set to the
maximum time (in milliseconds)
that the SCM should wait before it
will be updated again with the new
status. This is repeated until the
operation is completed. The
dwCheckPoint field should be incre-
mented to show the progress of
the operation. At the end of the op-
eration the status field should be
set to the value shown in Table 2.
At this point, the dwCheckPoint field
should be reset to zero. See
DemoSv2 for an example of how this
could be implemented.

Installing A Service
Listing 3 shows the calls made to
automatically register the DemoSv1
service to Windows. This is done if
you pass INSTALL or I as a parame-
ter to the program. There are es-
sentially three calls required. First
a call is made to OpenSCManager to
connect to the SCM: you will need

Operation Initial status Final status

Start SERVICE_START_PENDING SERVICE_RUNNING

Stop SERVICE_STOP_PENDING SERVICE_STOPPED

Pause SERVICE_PAUSE_PENDING SERVICE_PAUSED

Continue SERVICE_CONTINUE_PENDING SERVICE_RUNNING

➤ Table 2: Pending states

procedure InstallService;
var
hSCManager: SC_Handle;
hService: SC_Handle;

Begin
hSCManager:= OpenSCManager(nil,nil,SC_MANAGER_ALL_ACCESS);
If hSCManager <> 0 then
try
hService:= CreateService(hSCManager,DemoServiceName,DemoServiceDisplayName,
SERVICE_ALL_ACCESS,SERVICE_WIN32_OWN_PROCESS,
SERVICE_DEMAND_START,SERVICE_ERROR_NORMAL,
PChar(ParamStr(0)),nil,nil,nil,nil,nil);

if hService <> 0 then begin
WriteLn(‘Service was installed successfully.’);
AddEventDetailsToRegistry;

end else
WriteLn(Format(‘Failed to create the service. Error was ‘’%s’’’,
[SysErrorMessage(GetLastError)]));

finally
CloseServiceHandle(hSCManager)

end else
WriteLn(Format(‘Failed to open Service Control Manager. Error was ‘’%s’’’,
[SysErrorMessage(GetLastError)]));

End;
procedure UninstallService;
Var
hSCManager: SC_Handle;
hService: SC_Handle;

Begin
hSCManager := OpenSCManager(nil,nil,SC_MANAGER_ALL_ACCESS);
If hSCManager <> 0 then
try
hService := OpenService(hSCManager,DemoServiceName,SERVICE_ALL_ACCESS);
if hService <> 0 then
try
if DeleteService(hService) then begin
WriteLn(‘Service was uninstalled successfully.’);
RemoveEventDetailsFromRegistry;

end else
WriteLn(Format(‘Failed to delete service. Error was ‘’%s’’’,
[SysErrorMessage(GetLastError)]));

finally
CloseServiceHandle(hService);

end else
WriteLn(Format(‘Failed to open service “%s”: Error was ‘’%s’’’,
[DemoServiceName, SysErrorMessage(GetLastError)]));

finally
CloseServiceHandle(hSCManager)

end else
WriteLn(Format(‘Failed to open Service control Manager. Error was ‘’%s’’’,
[SysErrorMessage(GetLastError)]));

End;

➤ Listing 3

30 The Delphi Magazine Issue 24

administrator privilege for this to
be successful. If this was success-
ful a call is made to CreateService
to create the service. The declara-
tion for this API is shown in Listing
4, and Table 3 shows the meaning
of each parameter.

Once the service entry has been
created we then close the handle
by calling CloseServiceHandle.
Note the call to AddEventDetails-
ToRegistry: this is covered in the
section detailing event logging.

Removing A Service
Listing 3 also shows the calls made
to automatically uninstall the
DemoSv1 service from Windows.
This is done if you pass UNINSTALL
or U as a parameter to the program.
This is essentially the reverse of
the above process. A connection is
made to the SCM as before. A call to
OpenService then opens the named
service. Once opened it is deleted
using DeleteService. If the service
is currently running it will be
flagged for deletion. Finally the
connection to the SCM is closed.

Again, notice the call to Re-
moveEventDetailsFromRegistry, this
is covered in the next section.

The Event Viewer
If you look at Start/Programs/Ad-
ministrative Tools (Common)/Event
Viewer you should see a log of
events that have been generated
by device drivers, services, appli-
cations etc on your system for the
past few days. The Log/System op-
tion displays events mainly gener-
ated by device drivers. It is
recommended that the application
log be used for services.

Writing Events To The Log
Writing events to the log is rela-
tively easy but you have a bit of
work to do before you can call the
APIs.

You will need to create a mes-
sage resource containing the mes-
sages you intend to use and update
the registry to indicate the source
of this resource file (which can be
in either an EXE or a DLL) before
you can start generating events.
The demonstration programs on
the disk update the registry for
you.

Creating Message Resource
Event logging requires a special
kind of resource to support inter-
nationalisation of event messages.
To create this resource you will
need to use the message compiler
(MC.EXE) which comes with the
SDK. The source text file (with a
.MC extension) is fairly straightfor-
ward, Figure 1 shows part of the ex-
ample for DemoSv1. The message

compiler generates a C header, a
BIN file containing the resource
(MSG00001.BIN, for English mes-
sages) and an RC file (which speci-
fies the language and source files,
in this case MSG00001.BIN). The
RC file needs to be compiled to
create a .RES file which, in turn,
needs to be linked to the program
using the $R directive. You will
need to convert the header file into

hSCManager Handle from OpenSCManager.

ServiceName Service name.

DisplayName Text that appears on the Control panel services applet.

DwDesiredAccess Level of access required. Need update access.

DwServiceType Indicates if the process runs 1 or more services.

DwStartType When the service starts. At start-up or on demand.

DwErrorControl What SCM should do it the service fails to start.

BinaryPathName Fully qualified pathname to the EXE file.
From ParamStr(0).

LpLoadOrderGroup If the service is in a group which defines start order.

LpTagId Order within previous group.

Dependencies Names of services to start before this service.

ServiceStartName Id of account to run service in.

Password To use for the above.

➤ Table 3: CreateService parameters

Function CreateService(hSCManager: TSC_HANDLE; ServiceName, DisplayName: PChar;
dwDesiredAccess, dwServiceType, dwStartType, dwErrorControl: Integer;
BinaryPathName, lpLoadOrderGroup: PChar; lpTagId: PInteger;
Dependencies, ServiceStartName, Password: PChar): TSC_Handle; StdCall;

➤ Listing 4

MessageId=
Severity=Informational
SymbolicName=DEMO1_SERVICE_STARTED
Language=English
The service started successfully.
.

MessageId=
Severity=Warning
SymbolicName=DEMO1_SERVICE_PAUSED
Language=English
The service was paused.
.

MessageId=
Severity=Informational
SymbolicName=DEMO1_SERVICE_CONTINUED
Language=English
The service was resumed after being paused for %1 milliseconds.

➤ Figure 1

August 1997 The Delphi Magazine 31

a Pascal unit. In the examples for
this article I have supplied all the
intermediate files of this process in
case you don’t have the message
compiler. Note that the messages
can contain inserts (%1, %2 etc)
which can be specified at run time.

Updating The Registry
You can either link the message re-
source into your service EXE (the
demos do this) or into a different
program or DLL. Whichever you
choose, you must update the regis-
try to let Windows know where the
file is. A new key under
HKEY_LOCAL_MACHINE\System\

CurrentControlSet\

Services\EventLog\Application

needs to be created (this is known
as the source name). The name of
this key should be unique for the
service (use the service name).

You then need to create two values
for this key: EventMessageFile is the
fully qualified name of the EXE or
DLL containing the message re-
source, and TypesSupported con-
tains the bit mask of message types
supported (info, warning and
error).

If you fail to add the source name
to the registry the event will still be
logged but there will be no mes-
sage text displayed for the event.

In the source on the disk look for
the AddEventDetailsToRegistry
procedures to see how this was
done. When the service is Unin-
stalled the key needs to be
deleted. This is done in
RemoveEventDetailsFromRegistry.

Creating The Event
Listing 5 shows the sequence of
three calls needed to write to the

event log. The RegisterEventSource
API accepts two parameters. The
first is the UNC name of the host
computer (nil defaults to the local
machine). The second is the
source name mentioned earlier.
This function returns a handle that
needs to be passed to the following
calls. The ReportEvent API gener-
ates the event record. The declara-
tion for this function is shown in
Listing 6.

Table 4 shows the meaning of
each parameter. After generating
the event you need to call DeRegis-
terEventSource to close the handle.
Once the event has been generated
it should be present in the event
viewer under the application log.
In the DemoSv1 service I always
write the FServiceStatus record to
the event log as ‘raw data’ just to
show how it is done.

Running DemoSv1
If you wish to run DemoSv1 first com-
pile it in Delphi as a console appli-
cation (but do not run it from
Delphi). Then execute the pro-
gram in a console window and pass
INSTALL as a parameter. A message
should indicate that it was in-
stalled OK. Now, go into Settings/
Control Panel/Services. There
should be a service called Demon-
stration Service 1 listed with a
start-up type of manual. Its current
status should be blank.

To start the service select it
from the list then click the Start
button (you can pass a delay pe-
riod between 500 and 10000 in the
Start-up Parameters field). After a
few seconds the SCM should show
that its status is now started and it
should start beeping. If you look at
the event viewer an information
event should have been created to
show that the service was started.
You should now be able to pause
and then restart the service using
the Pause and Continue buttons. If
you restart the service you should
see a message in the event viewer
showing the number of millisec-
onds which elapsed while it was
paused. After clicking Stop to stop
the service the status should re-
turn to blank. To uninstall the serv-
ice, execute it in a console window
and pass UNINSTALLas a parameter.

function ReportEvent(hEventLog: THandle; wType, wCategory: Word;
dwEventID: DWORD; lpUserSid: Pointer; wNumStrings: Word; dwDataSize: DWORD;
Inserts: PCharArray; lpRawData: Pointer): BOOL; stdcall;

➤ Listing 6

var
EventSource: THandle;
Inserts: Array[0..0] Of PChar;

begin
EventSource := RegisterEventSource(nil,’DemoSerivce’);
Try
Inserts[0] := ‘1000’;
ReportEvent(EventSource, EVENTLOG_WARNING_TYPE,0,Id,nil,1,0,Inserts,nil);

finally
DeRegisterEventSource(EventSource);

end;
end;

➤ Listing 5

hEventLog The handle returned from RegisterEventSource.

wType One of the pre-defined constants for information, error or
warning types.

WCategory Can be anything meaningful for the service.

dwEventId The ID of one of the messages in the resource created by
MC.EXE.

lpUserSid The security identifier for the user. The demos specify nil.

wNumStrings The number of values to be used to insert into the message.

dwDataSize The number of bytes of raw data which can be optionally
added to the event record.

lpStrings Points to an array of PChars which contain the values of the
inserts.

lpRawData Pointer to the buffer to be written to the event record.

➤ Table 4: ReportEvent parameters

32 The Delphi Magazine Issue 24

That just about covers the ba-
sics as far as services are con-
cerned. I’ll now briefly describe the
classes I have developed to hide
these details and describe the
extended examples I have pro-
vided to demonstrate some of the
features described in this article.

Encapsulating Services
In Delphi Classes
My aim was, as far as possible, to
hide all the interface requirements
to the SCM inside Delphi classes.
The main problem areas are asso-
ciated with lengthy operations
such as start-up and close down. I
wanted to be able to simply exe-
cute code (such as DoService-
Startup) without having to worry
about co-ordinating updates to the
SCM if this was going to take a long
time and may be in danger of tim-
ing out. If required, an additional
thread is created with the respon-
sibility of updating the SCM with
the current state of play. Virtual
functions are used to indicate if a
thread should be created to per-
form this function. The default
TNTService class always returns
False. If an overridden method re-
turns true a thread is automatically
created to update the SCM.

I have created two base classes
to do this, TNTServiceController
and TNTService. Listing 7 shows the
type declarations for these two
classes: see SVCClass.Pas on the
disk for the implementation
details.

The Services.Pas unit contains
classes derived from the base
classes to implement the function-
ality for the services. Listing 8
shows the DemoSv2 project file to
show how a typical service pro-
gram would be implemented using
these classes.

The first problem you have when
attempting to implement Windows
call-back functions into classes is
the object model used by Delphi:
methods have an extra hidden in-
stance pointer (Self) so they can’t
normally be passed as call-back
functions. I covered this in Issue 18
in an article called Generic Make-
MethodInstance for 16/32 bit appli-
cations. We can use that technique
here. In case you don’t have that

issue I have included the file
MakeMic.Pas from that article on
the disk.

TNTServiceController Class
The main functions of this class are
as follows.

It keeps a list of services that it
controls. These are added to the
list via the RegisterServicemethod
when the program starts. Regis-
terService accepts a class refer-
ence as its parameter. This class
reference needs to be for a class
derived from TNTService. Keeping a
list of class references in the object
ensures that the class is able to de-
fer the start-up of services until re-
quested by the SCM. This keeps the
number of threads active to the ab-
solute minimum (number of
started services plus 1).

It provides a private ServiceMain
method (declared with the stdcall
directive) and automatically
makes it callable from Windows by
using MakeMethodInstance.

It provides InstallServices and
UninstallServices methods to al-
low for block or individual install
and uninstall calls for the regis-
tered services. Configuration op-
tions can be supplied by the
particular implementation of the
TNTService derived class (TNTServ-
ice provides default values). De-
pendency information can be
specified for a service.

The Connect method connects to
the SCM and starts the dispatcher.
It supplies the names of all regis-
tered services each having the
same ServiceMain entry point (the
address which is returned from
MakeMethodInstance).

When the dispatcher need to
create a service it creates a thread
then calls ServiceMain. ServiceMain
is responsible for starting the re-
quested service via a call to the pri-
vate method StartService (which
creates a new thread). After doing
this, ServiceMain ends and the
thread created by the dispatcher
terminates. I originally wondered if
this was valid but eventually found
an article in the MSDN that con-
firms that is OK to do this.

The StartService method
checks the name supplied against
the names of the registered

services. If a match is found it cre-
ates an instance of the TNTService
derived class (ie a new thread)
which becomes the main worker
thread for that service. The mecha-
nism for doing this is similar to the
way CreateForm works (see
Forms.Pas).

DemoSv2 uses a class derived
from TNTServiceController called
TNTServiceControllerDemo which
adds data and synchronisation ob-
jects that are shared between the
services 2b and 2c.

TNTService Class
The TNTService class is derived
from the TThread class. The main
functions of this class are as
follows.

It has a ProcessParms virtual
method that is called at the end of
the constructor to allow the serv-
ice to process any parameters en-
tered on the service start-up
window. The parameters are built
in the ServiceMain method.

It sets the FreeOnTerminate flag to
ensure that the TThread object is
freed when the service ends.

It provides a private ControlHan-
dler method and automatically
makes it callable from Windows by
using a MakeMethodInstance. This
method accepts the control re-
quests from the SCM for this serv-
ice. This entry point is unique for
each service.

If required, when the Handler is
requested to change the running
status (eg Pause or Continue) and
this may take a long time, it creates
a second thread to keep the SCM
updated with the current status.

It defines empty virtual methods
that are called in response to re-
quests from the SCM. Descendant
classes should override these if
required.

It provides a LogEvent method to
allow the service to easily generate
events.

It also has a class function called
ServiceName that returns the serv-
ice name. This is used in the
TNTServiceController class when it
needs to reference the service.

The class provides configura-
tion and option information to the
TNTServiceController via class
functions and virtual methods.

August 1997 The Delphi Magazine 33

Class functions are used whenever
that value may be required when
there may not be an instance of the
object (eg ServiceName).

The Execute method calls the
DoServiceStartUp method then
calls DoServiceProcessing. Descen-
dant classes must put their main
service processing in this method,
not the execute method.

The class defines three abstract
methods: DoServiceProcessing,

ServiceDisplayName and Service-
Name which must be overridden in
descendant classes. A unique class
needs to be defined for each serv-
ice. DemoSv2 defines three classes
derived from TNTService to imple-
ment the different services which
are described in Table 5.

Running DemoSv2
This program can be compiled and
run in exactly the same way as

DemoSv1. There are slight differ-
ences: After INSTALL or UNINSTALL
on the command line you can sup-
ply a list of individual services to
be installed or uninstalled.

After installing the services you
should see three new services in
the Services applet. These are
listed as Demonstration Service
2a, 2b and 2c. There are slight dif-
ferences in the configuration for
each these services to show how
the various options are imple-
mented for each service. I have im-
plemented a dependency between
the services 2b and 2c. Also, serv-
ice 2b accepts a parameter entered
by the user in the Services control
panel applet. Table 5 lists the
specifics for each service.

Service 2b is set to monitor up-
dates to directory C:\TEMPX (it
creates the directory if it doesn’t
exist). If an update is made to this
directory it copies all files with the
archive attribute to C:TEMPX\
SVBACKUP, then clears the archive
attribute.The optional parameter
can be a wild card (defaults to *.*)
used to limit the files which are
copied. As well as doing this it up-
dates a log of information in a
TStrings object. This object is
stored in the TNTServiceControl-
lerDemo object. Service 2c waits for
requests from a client application
(DemoCl2.DPR on the disk) to a
named pipe. DemoCl2 is another
console application. Pass Query as
the command line parameter to list
the log details, and pass Reset as
the parameter to clear the log
details.

Due to the dependency between
services 2b and 2c the SCM will en-
sure that the services start in the
correct order. Also, if you request
to stop service 2b it will prompt
you to confirm that you also want
to close service 2c. If you click OK
the SCM will stop both services.
Note: if you install service 2c and
not 2b the installation will work OK
but you will not be able to start
service 2c. This is because the SCM
cannot find the details for service
2b in the registry.

Further Information
I have supplied a file on the disk
called SERVICES.TXT that lists

Service Description
Start-up
type

Can be
paused

Depends
on

Uses
params

2a Beeper from
DemoSv1

On
demand

Yes – Yes
(elapse ms)

2b Monitors
directory updates

Auto Yes – Yes
(wild card)

2c Query service
using pipes

Auto No 2b No

➤ Table 5: DemoSv2 services

TNTServiceController = class
private
FAvailableServices: TList;
FServiceMainInstance: Pointer;
function ProcessOption: DWORD;
procedure ServiceMain(NumArgs: DWord; Args: PCharArray); StdCall;
procedure StartService(Name: Shortstring; Parms: TStrings);

public
constructor Create; virtual;
destructor Destroy; override;
procedure Connect;
procedure InstallServices(Names: TStrings);
procedure RegisterService(SvcClass: TNTServiceClass);
procedure UnInstallServices(Names: TStrings);

end;
TNTService = class(TThread)
private
FController: TNTServiceController;
FHandlerInstance: Pointer;
FServiceStatus: TServiceStatus;
FServicStatusHandle: SERVICE_STATUS_HANDLE;
procedure DoTerminate; override;
function NeedExtnededElapseTime(Option: DWORD): Boolean; virtual;
function GetPaused: Boolean;
procedure SetCurrentState(Value: DWORD);
procedure StartNotificationThread;
procedure TerminateNotificationThread;

protected
function AcceptPause: Boolean; virtual;
function AcceptStop: Boolean; virtual;
function CanInteract: Boolean; virtual;
procedure DoHandlerNotification; virtual;
procedure DoServiceStartup; virtual;
procedure DoServiceProcessing; virtual; abstract;
procedure DoServiceCloseDown; virtual;
procedure Execute; override;
procedure Handler(Code: Integer); stdcall;
procedure LogEvent(Severity: DWord; Id: DWord; Inserts: PCharArray;
NumInserts: Integer);

procedure ProcessParms(Parms: TStrings); virtual;
function WantShutdownNotification: Boolean; virtual;
property CurrentState: DWORD read FServiceStatus.dwCurrentState
write SetCurrentState;

property Paused: Boolean read GetPaused;
public
constructor Create(Parms: TStrings; Controller: TNTServiceController);
virtual;

destructor Destroy; override;
class procedure DependentServices(List: TStrings); virtual;
class function ServiceDisplayName: Shortstring; virtual; abstract;
class function ServiceName: Shortstring; virtual; abstract;
class function ServiceStartType: DWORD; virtual;
property Controller: TNTServiceController read FController;

end;

➤ Listing 7

34 The Delphi Magazine Issue 24

some articles in the MSDN, which
provide additional information.

One Final Tip...
I was caught out for a while when
Delphi was failing to compile a
service program saying that it was
unable to create the output file. It
turned out that the event viewer
had a lock on the file.

As the resources for the message
are in the EXE files the event viewer
holds the file open when it needs to
display messages linked to that
service.

John Chaytor is a freelance
programmer who lives and works
in Brighton, UK, and can be
contacted via CompuServe as
100265,3642

program DemoSv2;
Uses SysUtils, Classes, Windows, SvcClass, Services, Logging;
var
I: Integer;
Option: ShortString;
ServiceController: TNTServiceController;
ServiceList: TStrings;

begin
ServiceController := TNTServiceControllerDemo.Create;
try
Option := UpperCase(ParamStr(1));
ServiceList := TStringList.Create;
For I := 2 to ParamCount do
ServiceList.Add(UpperCase(ParamStr(I)));

With ServiceController do
try
RegisterService(TService2a);
RegisterService(TService2b);
RegisterService(TService2c);
if Option = ‘’ then
Connect

else
if (Option = ‘INSTALL’) or (Option = ‘I’) then
InstallServices(ServiceList)

else
if (Option = ‘UNINSTALL’) or (Option = ‘U’) then
UninstallServices(ServiceList)

else
if (Option = ‘VERSION’) or (Option = ‘V’) then
DisplayVersionDetails

else
DisplaySyntaxOptions;

finally
ServiceList.Free;

end;
finally
ServiceController.Free;

end;
end.

➤ Listing 8

	Getting Started
	Service Program Structure
	Process Start-Up
	Service Start-Up
	Service Configuration Data
	Lengthy Operations
	Installing A Service
	Removing A Service
	The Event Viewer
	Writing Events To The Log
	Creating Message Resource
	Updating The Registry
	Creating The Event
	Running DemoSv1
	Encapsulating Services In Delphi Classes
	TNTServiceController Class
	TNTService Class
	Running DemoSv2
	Further Information
	One Final Tip...

